Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Intervalo de año de publicación
1.
Chem Biol Drug Des ; 100(5): 722-729, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36050829

RESUMEN

Histamine is involved in several central nervous system processes including cognition. In the last years, H3 receptor (H3 R) antagonists have been widely explored for their potential on dementias and other cognitive dysfunctions, and the cooperative role between histamine and acetylcholine neurotransmissions on cognitive processes is widely known in literature. This motivated us to assess the potential of 1-[(2,3-dihydrobenzofuran-1-yl)methyl]piperazines (LINS01 compounds) as inhibitors of cholinesterases, and thus this work presents the inhibitory effect of such compounds against acetyl (AChE) and butyrylcholinesterase. A set of 16 selected compounds were evaluated, being compounds 2d and 2e the most potent inhibitors of both cholinesterases (IC50 13.2-33.9 µM) by competitive mechanism, as indicated by the kinetic assays. Molecular docking simulations suggested that the allylpiperazine and dihydrobenzofuran motifs present in these compounds are important to perform π-interactions with key tryptophan residues from the enzymes, increasing their affinity for both H3 R and cholinesterases. Metric analysis support that compound 2d (LINS01022) should be highlighted due to its balanced lipophilicity (ClogP 2.35) and efficiency (LE 0.32) as AChE inhibitor. The results add important information to future design of dual H3 R-cholinesterases ligands.


Asunto(s)
Enfermedad de Alzheimer , Receptores Histamínicos H3 , Acetilcolina , Acetilcolinesterasa/metabolismo , Benzofuranos/química , Benzofuranos/farmacología , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Histamina , Antagonistas de los Receptores Histamínicos/farmacología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Piperazinas/química , Piperazinas/farmacología , Receptores Histamínicos H3/química , Relación Estructura-Actividad , Triptófano
2.
Molecules ; 27(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35630694

RESUMEN

Dengue is an important arboviral infectious disease for which there is currently no specific cure. We report gemini-like (geminoid) alkylated amphiphilic peptides containing lysines in combination with glycines or alanines (C15H31C(O)-Lys-(Gly or Ala)nLys-NHC16H33, shorthand notation C16-KXnK-C16 with X = A or G, and n = 0-2). The representatives with 1 or 2 Ala inhibit dengue protease and human furin, two serine proteases involved in dengue virus infection that have peptides with cationic amino acids as their preferred substrates, with IC50 values in the lower µM range. The geminoid C16-KAK-C16 combined inhibition of DENV2 protease (IC50 2.3 µM) with efficacy against replication of wildtype DENV2 in LLC-MK2 cells (EC50 4.1 µM) and an absence of toxicity. We conclude that the lysine-based geminoids have activity against dengue virus infection, which is based on their inhibition of the proteases involved in viral replication and are therefore promising leads to further developing antiviral therapeutics, not limited to dengue.


Asunto(s)
Antivirales , Virus del Dengue , Furina , Inhibidores de Proteasas , Replicación Viral , Antivirales/farmacología , Dengue/tratamiento farmacológico , Virus del Dengue/efectos de los fármacos , Virus del Dengue/fisiología , Furina/antagonistas & inhibidores , Humanos , Péptido Hidrolasas , Péptidos/farmacología , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
3.
Environ Technol ; 43(20): 3037-3046, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33826477

RESUMEN

Fungi are natural degraders of organic matter which can produce enzymes for many industrial and biotechnological applications. In this context, crude enzymatic extracts of fungal isolates were evaluated regarding their hydrolytic and ligninolytic abilities. The fungal strains were isolated from soil samples from Atlantic Rain Forest Park incremented with sugar cane biomass (filter cake), which allowed the selection of efficient lignocellulolytic enzymes. A total of 190 fungi were isolated and evaluated by endocellulase screenings. Thirteen fungi were selected about their hydrolytic and ligninolytic abilities. Among them, three isolates showed xylanolytic activity. Eleven of the isolates were selected by their cellulolytic abilities. Proteolytic enzymes were also detected for three fungi, allowing the classification as metalloprotease and serine protease. The isolates SPZPF3_47 (Mucor sp.), SPZPF1_129 (Byssochlamys nivea) and SPZPF1_141 (Paecilomyces saturatus) were selected for further investigation on their lignin peroxidase abilities. KM, Vmax and kcat apparent for lignin peroxidases were also determined. The strain of Mucor sp. (SPZPF3_47) was highlighted since this fungal genus was not well described about its isolation in the adopted conditions in our study, and showing ligninolytic abilities.


Asunto(s)
Saccharum , Suelo , Bosques , Hongos , Lignina , Residuos Sólidos
4.
Mar Pollut Bull ; 142: 309-314, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31232308

RESUMEN

The aim of the study was the investigation of bacterial diversity from sediments collected at Santos Estuarine System, regarding to their abilities for hexadecane biotransformation. Hexadecane is a medium-chain linear alkane, considered as a model molecule for hydrocarbon biodegradation studies. It is a component from aliphatic fraction of crude petroleum, commonly related to environmental contamination by diesel oil. Santos Basin is an area with historical petroleum contamination. In the present work, sediment samples from this area were inoculated in artificial seawater (ASW), containing hexadecane as carbon source. Six bacterial isolates were selected as resistant to hexadecane. Chromatographic results showed biodegradation indexes above 97%. After 48 h of culture, five of them could degrade >80% of the initial hexadecane added. These isolates were characterized by 16S rDNA gene sequencing analysis. The following species were found: Bacillus amyloliquefaciens, Staphylococcus epidermidis, Micrococcus luteus, Nitratireductor aquimarinus, and Bacillus pumilus.


Asunto(s)
Alcanos/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Bacterias/genética , Biodegradación Ambiental , ADN Ribosómico , Gasolina , Petróleo/metabolismo , Contaminación por Petróleo , Agua de Mar/microbiología , Contaminantes Químicos del Agua/metabolismo
5.
Int J Biol Macromol ; 113: 1134-1141, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29524492

RESUMEN

Nep (Natrialba magadii extracellular protease) is a halolysin-like peptidase secreted by the haloalkaliphilic archaeon Natrialba magadii. Many extracellular proteases have been characterized from archaea to bacteria as adapted to hypersaline environments retaining function and stability until 4.0M NaCl. As observed in other secreted halolysins, this stability can be related to the presence of a C-terminal extension (CTE) sequence. In the present work, we compared the biochemical properties of recombinant Nep protease with the truncated form at the 134 amino acids CTE (Nep∆CTE), that was more active in 4M NaCl than the non-truncated wild type enzyme. Comparable to the wild type, Nep∆CTE protease is irreversibly inactivated at low salt solutions. The substrate specificity of the truncated Nep∆CTE was similar to that of wild type form as demonstrated by a combinatorial library of FRET substrates. The enzyme stability, the effect of different salts and the thermodynamics assays using different lengths of substrates demonstrated similarities between the two forms. Altogether, these data provide further information on the stability and structural determinants of halolysins under different salinities, especially concerning the enzymatic behavior.


Asunto(s)
Espacio Extracelular/enzimología , Halobacteriaceae/citología , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Sales (Química)/farmacología , Relación Dosis-Respuesta a Droga , Halobacteriaceae/enzimología , Cinética , Solventes/química , Relación Estructura-Actividad , Especificidad por Sustrato
6.
Peptides ; 76: 80-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26775801

RESUMEN

Tripeptidyl peptidase I (TPP-I), also named ceroid lipofuscinosis 2 protease (CLN2p), is a serine carboxyl lysosomal protease involved in neurodegenerative diseases, and has both tripeptidyl amino- and endo- peptidase activities under different pH conditions. We developed fluorescence resonance energy transfer (FRET) peptides using tryptophan (W) as the fluorophore to study TPP-I hydrolytic properties based on previous detailed substrate specificity study (Tian Y. et al., J. Biol. Chem. 2006, 281:6559-72). Tripeptidyl amino peptidase activity is enhanced by the presence of amino acids in the prime side and the peptide NH2-RWFFIQ-EDDnp is so far the best substrate described for TPP-I. The hydrolytic parameters of this peptide and its analogues indicated that the S4 subsite of TPP-I is occluded and there is an electrostatic interaction of the positively charged substrate N-terminus amino group and a negative locus in the region of the enzyme active site. KCl activated TPP-I in contrast to the inhibition by Ca(2+) and NaCl. Solvent kinetic isotope effects (SKIEs) show the importance of the free N-terminus amino group of the substrates, whose absence results in a more complex solvent-dependent enzyme: substrate interaction and catalytic process. Like pure TPP-I, rat spleen and kidney homogenates cleaved NH2-RWFFIQ-EDDnp only at F-F bond and is not inhibited by pepstatin, E-64, EDTA or PMSF. The selectivity of NH2-RWFFIQ-EDDnp to TPP-I was also demonstrated by the 400 times higher k(cat)/K(M) compared to generally used substrate, NH2-AAF-MCA and by its resistance to hydrolysis by cathepsin D that is present in high levels in kidneys.


Asunto(s)
Aminopeptidasas/química , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/química , Serina Proteasas/química , Secuencia de Aminoácidos , Animales , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Masculino , Proteolisis , Ratas , Extractos de Tejidos/química , Tripeptidil Peptidasa 1
7.
Braz J Microbiol ; 46(2): 347-54, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26273248

RESUMEN

Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications.


Asunto(s)
Bacillus/aislamiento & purificación , Productos Biológicos/análisis , Brevibacterium/aislamiento & purificación , Hidrolasas/análisis , Cloruro de Sodio/metabolismo , Microbiología del Suelo , Staphylococcus/aislamiento & purificación , Bacillus/clasificación , Bacillus/genética , Bacillus/metabolismo , Brasil , Brevibacterium/clasificación , Brevibacterium/genética , Brevibacterium/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Staphylococcus/clasificación , Staphylococcus/genética , Staphylococcus/metabolismo
8.
Braz. j. microbiol ; 46(2): 347-354, Apr-Jun/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-749729

RESUMEN

Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications.


Asunto(s)
Bacillus/aislamiento & purificación , Productos Biológicos/análisis , Brevibacterium/aislamiento & purificación , Hidrolasas/análisis , Microbiología del Suelo , Cloruro de Sodio/metabolismo , Staphylococcus/aislamiento & purificación , Brasil , Bacillus/clasificación , Bacillus/genética , Bacillus/metabolismo , Brevibacterium/clasificación , Brevibacterium/genética , Brevibacterium/metabolismo , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , /genética , Análisis de Secuencia de ADN , Suelo , Staphylococcus/clasificación , Staphylococcus/genética , Staphylococcus/metabolismo
9.
Biochim Biophys Acta ; 1844(7): 1260-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24726393

RESUMEN

The substrate specificity of TcoCBc1 was evaluated using two internally quenched fluorescent peptide libraries with randomized sequences designed to detect carboxydipeptidase (Abz-GXXZXK(Dnp)-OH) and endopeptidase (Abz-GXXZXXQ-EDDnp) activities at acidic and neutral pHs, respectively. All the data obtained with TcoCBc1 were compared with those of human cathepsin B, including the pH profiles of the hydrolytic reactions. The most relevant observation is the preference of TcoCBc1 for substrates with a pair of acidic amino acids at positions P(2) and P(1) for its carboxydipeptidase activity and the well acceptance for E and D at P(1) position for endopeptidase activity. These peculiar preferences for negatively charged groups of TcoCBc1 and its requirements for carboxydipeptidase activity were also observed on Abz labeled analogues of bradykinin (Abz-RPPG(↓)FSAFR-OH, Abz-RPPG(↓)FS(↓)AF-OH, Abz-RPPG(↓)DE(↓)AF-OH) and angiotensin I (Abz-DR(↓)VYIHAFHL-OH), where (↓) indicates the cleavage site. TcoCBc1 was modeled based on the atomic coordinates of the cathepsin B from Trypanosoma brucei and the positively charged environment in TcoCBc1 catalytic site contrasts with the negatively charged environment in human cathepsin B. The preferences of S1 and S2 subsites of TcoCBc1 for acidic amino acids have to be taken into consideration for future studies of physiological roles of TcoCBc1 as for instance in apoptotic processes of Trypanosoma congolense.


Asunto(s)
Angiotensina I/metabolismo , Bradiquinina/metabolismo , Catepsina B/metabolismo , Fragmentos de Péptidos/metabolismo , Trypanosoma congolense/enzimología , Dominio Catalítico , Catepsina B/química , Transferencia Resonante de Energía de Fluorescencia , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Modelos Moleculares , Biblioteca de Péptidos , Conformación Proteica , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
10.
Biochim Biophys Acta ; 1844(3): 545-52, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24373874

RESUMEN

Snake venom metalloproteinases (SVMPs) belonging to P-I class are able to hydrolyze extracellular matrix proteins and coagulation factors triggering local and systemic reactions by multiple molecular mechanisms that are not fully understood. BmooMPα-I, a P-I class SMVP from Bothrops moojeni venom, was active upon neuro- and vaso-active peptides including angiotensin I, bradykinin, neurotensin, oxytocin and substance P. Interestingly, BmooMPα-I showed a strong bias towards hydrolysis after proline residues, which is unusual for most of characterized peptidases. Moreover, the enzyme showed kininogenase activity similar to that observed in plasma and cells by kallikrein. FRET peptide assays indicated a relative promiscuity at its S2-S'2 subsites, with proline determining the scissile bond. This unusual post-proline cleaving activity was confirmed by the efficient hydrolysis of the synthetic combinatorial library MCA-GXXPXXQ-EDDnp, described as resistant for canonical peptidases, only after Pro residues. Structural analysis of the tripeptide LPL complexed with BmooMPα-I, generated by molecular dynamics simulations, assisted in defining the subsites and provided the structural basis for subsite preferences such as the restriction of basic residues at the S2 subsite due to repulsive electrostatic effects and the steric impediment for large aliphatic or aromatic side chains at the S1 subsite. These new functional and structural findings provided a further understanding of the molecular mechanisms governing the physiological effects of this important class of enzymes in envenomation process.


Asunto(s)
Venenos de Crotálidos/enzimología , Calicreínas/metabolismo , Metaloproteasas/metabolismo , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Bothrops , Hidrólisis , Cinética , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/metabolismo , Prolil Oligopeptidasas , Radioinmunoensayo , Especificidad por Sustrato
11.
Vet Microbiol ; 163(3-4): 264-73, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23421966

RESUMEN

Bacterial proteases are important for metabolic processes and pathogenesis in host organisms. The bacterial swine pathogen Mycoplasma hyopneumoniae has 15 putative protease-encoding genes annotated, but none of them have been functionally characterized. To identify and characterize peptidases that could be relevant for infection of swine hosts, we investigated the peptidase activity present in the pathogenic 7448 strain of M. hyopneumoniae. Combinatorial libraries of fluorescence resonance energy transfer peptides, specific inhibitors and pH profiling were used to screen and characterize endopeptidase, aminopeptidase and carboxypeptidase activities in cell lysates. One metalloendopeptidase, one serine endopeptidase, and one aminopeptidase were detected. The detected metalloendopeptidase activity, prominent at neutral and basic pH ranges, was due to a thimet oligopeptidase family member (M3 family), likely an oligoendopeptidase F (PepF), which cleaved the peptide Abz-GFSPFRQ-EDDnp at the F-S bond. A chymotrypsin-like serine endopeptidase activity, possibly a subtilisin-like serine protease, was prominent at higher pH levels, and was characterized by its preference for a Phe residue at the P1 position of the substrate. The aminopeptidase P (APP) activity showed a similar profile to that of human membrane-bound APP. Genes coding for these three peptidases were identified and their transcription was confirmed in the 7448 strain. Furthermore, M. hyopneumoniae cell lysate peptidases showed effects on kallikrein-kinin system-like substrates, such as bradykinin-derived substrates and human high molecular weight kininogen. The M. hyopneumoniae peptidase activities, here characterized for the first time, may be important for bacterial survival strategies and thus represent possible targets for drug development against M. hyopneumoniae swine infections.


Asunto(s)
Sistema Calicreína-Quinina , Mycoplasma hyopneumoniae/enzimología , Péptido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Concentración de Iones de Hidrógeno , Cinética , Mycoplasma hyopneumoniae/clasificación , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Filogenia , Alineación de Secuencia , Especificidad por Sustrato
12.
Anal Biochem ; 421(1): 299-307, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22067978

RESUMEN

Identification of synthetic peptide substrates for novel peptidases is an essential step for their study. With this purpose we synthesized fluorescence resonance energy transfer (FRET) peptide libraries Abz (or MCA)-GXXXXXQ-EDDnp and Abz (or MCA)-GXXZXXQ-EDDnp, where X consists of an equimolar mixture of all amino acids, the Z position is fixed with one of the proteinogenic amino acids (cysteine was excluded), Abz (ortho-aminobenzoic acid) or MCA ([7-amino-4-methyl]coumarin) is the fluorescence donor and Q-EDDnp (glutamine-[N-(2,4-dinitrophenyl)-ethylenediamine]) is the fluorescence acceptor. The peptide libraries MCA-GXXX↓XXQ-EDDnp and MCA-GXXZ↓XXQ-EDDnp were cleaved as indicated (↓) by trypsin, chymotrypsin, cathepsin L, pepsin A, and Eqolisin as confirmed by Edman degradation of the products derived from the digestion of these libraries. The best hydrolyzed Abz-GXXZXXQ-EDDnp sublibraries by these proteases, including Dengue 2 virus NS2B-NS3 protease, contained amino acids at the Z position that are reported to be well accepted by their S(1) subsite. The pH profiles of the hydrolytic activities of these canonical proteases on the libraries were similar to those reported for typical substrates. The FRET peptide libraries provide an efficient and simple approach for detecting nanomolar concentrations of endopeptidases and are useful for initial specificity characterization as performed for two proteases secreted by a Bacillus subtilis.


Asunto(s)
Endopeptidasas/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes , Biblioteca de Péptidos , Secuencia de Aminoácidos , Animales , Bovinos , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética
13.
Biochimie ; 94(3): 798-805, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22177966

RESUMEN

Nep (Natrialba magadii extracellular protease) is a halolysin-like peptidase secreted by the haloalkaliphilic archaeon N. magadii that exhibits optimal activity and stability in salt-saturated solutions. In this work, the effect of salt on the function and structure of Nep was investigated. In absence of salt, Nep became unfolded and aggregated, leading to the loss of activity. The enzyme did not recover its structural and functional properties even after restoring the ideal conditions for catalysis. At salt concentrations higher than 1 M (NaCl), Nep behaved as monomers in solution and its enzymatic activity displayed a nonlinear concave-up dependence with salt concentration resulting in a 20-fold activation at 4 M NaCl. Although transition from a high to a low-saline environment (3-1 M NaCl) did not affect its secondary structure contents, it diminished the enzyme stability and provoked large structural rearrangements, changing from an elongated shape at 3 M NaCl to a compact conformational state at 1 M NaCl. The thermodynamic analysis of peptide hydrolysis by Nep suggests a significant enzyme reorganization depending on the environmental salinity, which supports in solution SAXS and DLS studies. Moreover, solvent kinetic isotopic effect (SKIE) data indicates the general acid-base mechanism as the rate-limiting step for Nep catalysis, like classical serine-peptidases. All these data correlate the Nep conformational states with the enzymatic behavior providing a further understanding on the stability and structural determinants for the functioning of halolysins under different salinities.


Asunto(s)
Halobacteriaceae/enzimología , Subtilisinas/química , Subtilisinas/metabolismo , Catálisis , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Estructura Terciaria de Proteína , Temperatura
14.
Biochem Biophys Res Commun ; 407(4): 640-4, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21419753

RESUMEN

Here we report the hydrolytic behavior of recombinant YFV NS2B/NS3 protease against FRET substrates mimicking the prime and non-prime region of the natural polyprotein cleavage sites. While the P2-P'1 motif is the main factor associated with the catalytic efficiency of Dengue (DV) and West Nile Virus (WNV) protease, we show that the k(cat)/K(m) of YFV NS2B/NS3 varied by more than two orders of magnitude, despite the presence of the same motif in all natural substrates. The catalytic significance of this homogeneity - a unique feature among worldwide prominent flavivirus - was kinetically analyzed using FRET peptides containing all possible combinations of two and three basic amino acids in tandem, and Arg and Lys residues produced distinct effects on k(cat)/K(m). The parallel of our data with those obtained in vivo by Chambers et al. (1991) restrains the idea that these sites co-evolved with the NS2B/NS3 protease to promote highly efficient hydrolysis and supports the notion that secondary substrate interaction distant from cleavage sites are the main factor associated with the different hydrolytic rates on YFV NS2B-NS3pro natural substrates.


Asunto(s)
Proteínas no Estructurales Virales/química , Virus de la Fiebre Amarilla/enzimología , Secuencias de Aminoácidos , Concentración de Iones de Hidrógeno , Hidrólisis , Péptidos/química , ARN Helicasas/química , ARN Helicasas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Especificidad por Sustrato , Proteínas no Estructurales Virales/genética
15.
Biol Chem ; 391(12): 1461-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21087086

RESUMEN

The 3C-like peptidase of the severe acute respiratory syndrome virus (SARS-CoV) is strictly required for viral replication, thus being a potential target for the development of antiviral agents. In contrast to monomeric picornavirus 3C peptidases, SARS-CoV 3CLpro exists in equilibrium between the monomer and dimer forms in solution, and only the dimer is proteolytically active in dilute buffer solutions. In this study, the increase of SARS-CoV 3CLpro peptidase activity in presence of kosmotropic salts and crowding agents is described. The activation followed the Hofmeister series of anions, with two orders of magnitude enhancement in the presence of Na2SO4, whereas the crowding agents polyethylene glycol and bovine serum albumin increased the hydrolytic rate up to 3 times. Kinetic determinations of the monomer dimer dissociation constant (K(d)) indicated that activation was a result of a more active dimer, without significant changes in K(d) values. The activation was found to be independent of substrate length and was derived from both k(cat) increase and K(m) decrease. The viral peptidase activation described here could be related to the crowded intracellular environment and indicates a further fine-tuning mechanism for biological control, particularly in the microenvironment of the vesicles that are induced in host cells during positive strand RNA virus infection.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteínas Virales/metabolismo , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas/química , Hidrólisis , Cinética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas Virales/química , Replicación Viral
16.
J Biol Chem ; 285(28): 21437-45, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20442413

RESUMEN

Scytalidoglutamic peptidase (SGP) is the prototype of fungal glutamic peptidases that are characteristically pepstatin insensitive. These enzymes have a unique catalytic dyad comprised of Gln(53) and Glu(136) that activate a bound water molecule for nucleophilic attack on the carbonyl carbon atom of the scissile peptide bond. The hydrolysis by SGP at peptide bonds with proline in the P(1)' position is a rare event among peptidases that we investigated using the series of fluorescence resonance energy transfer peptides, Abz-KLXPSKQ-EDDnp, compared with the series Abz-KLXSSKQ-EDDnp. The preference observed in these two series for Phe and His over Leu, Ile, Val, Arg, and Lys, seems to be related to the structure of the S(1) subsite of SGP. These results and the pH profiles of SGP activity showed that its S(1) subsite can accommodate the benzyl group of Phe at pH 4 as well as the positively charged imidazolium group of His. In the pH range 2 to 7, SGP maintains its structure and activity, but at pH 8 or higher it is irreversibly denatured. The intrinsic fluorescence of the Trp residues of SGP were sensitive to the titration of carboxyl groups having low pK values; this can be attributed to the buried Asp(57) and/or Asp(43) as described in SGP three-dimensional structure. The solvent kinetic isotope effects and the proton inventory experiments support a mechanism for the glutamic peptidase SGP that involves the nucleophilic attack of the general base (Glu(136)) activated water, and establish a fundamental role of the S(1) subsite interactions in promoting catalysis.


Asunto(s)
Hongos/enzimología , Glutamina/química , Péptido Hidrolasas/química , Serina Endopeptidasas/química , Ácido Aspártico/química , Carbono/química , Catálisis , Dicroismo Circular , Histidina/química , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Prolina/química , Conformación Proteica , Triptófano/química
17.
Protein Pept Lett ; 17(6): 796-802, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20205649

RESUMEN

Enzyme-substrate interaction under the presence of high concentration of salts is of great interest for biotechnology applications and basic enzymology. In our previous work, the salt effect on halophilic subtilase SR5-3 was evaluated with Suc-AAPF-MCA and with the FRET peptide Abz-AAPFSSKQ-EDDnp. It was demonstrated that the magnitude of catalytic activity enhancement was affected by the presence of the prime site residues (Okamoto et al., 2009). In this work, a detailed analysis of the salt effect on SR5-3 protease substrate specificity was performed using chromogenic and coumarin substrates as well as FRET peptides derived from Abz-KLRSSKQ-EDDnp. The followings were demonstrated: 1) Preference of amino acid of SR5-3 protease at the P(3), P(2), P(1), P(1)' or P(2)' position of FRET substrates was almost similar with that of subtilisin. 2) Under the presence of the salts (3M NaCl or 1M Na(2)SO(4)), SR5-3 protease showed higher kcat values, lower Km values and totally 2-6 times higher kcat/Km values compared with those of control for FRET substrates, and salts did not significantly affect the preference of amino acid residues at the primary positions (P1 and P1'), but it affected the preference at the P(2) and P(2)' position. In contrast, for smaller substrates with only non-prime sites, SR5-3 protease showed 20-75 times higher kcat/Km values compared with those of control. These findings are in agreement with the notion that increases in enzyme-substrate interactions in subtilases alter the rate-determining step in peptide hydrolysis.


Asunto(s)
Bacillaceae/enzimología , Proteínas Bacterianas/metabolismo , Péptidos/metabolismo , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis/efectos de los fármacos , Hidrólisis/efectos de los fármacos , Cloruro de Sodio/farmacología , Especificidad por Sustrato
18.
J Agric Food Chem ; 57(19): 9210-7, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19746980

RESUMEN

Protease production was carried out in solid state fermentation. The enzyme was purified through precipitation with ethanol at 72% followed by chromatographies in columns of Sephadex G75 and Sephacryl S100. It was purified 80-fold and exhibited recovery of total activity of 0.4%. SDS-PAGE analysis indicated an estimated molecular mass of 24.5 kDa and the N-terminal sequence of the first 22 residues was APYSGYQCSMQLCLTCALMNCA. Purified protease was only inhibited by EDTA (96.7%) and stimulated by Fe(2+) revealing to be a metalloprotease activated by iron. Optimum pH was 5.5, optimum temperature was 75 degrees C, and it was thermostable at 65 degrees C for 1 h maintaining more than 70% of original activity. Through enzyme kinetic studies, protease better hydrolyzed casein than azocasein. The screening of fluorescence resonance energy transfer (FRET) peptide series derived from Abz-KLXSSKQ-EDDnp revealed that the enzyme exhibited preference for Arg in P(1) (k(cat)/K(m) = 30.1 mM(-1) s(-1)).


Asunto(s)
Metaloproteasas/aislamiento & purificación , Metaloproteasas/metabolismo , Thermoascus/enzimología , Secuencia de Aminoácidos , Caseínas/metabolismo , Estabilidad de Enzimas , Transferencia Resonante de Energía de Fluorescencia , Calor , Cinética , Metaloproteasas/química , Datos de Secuencia Molecular , Peso Molecular , Especificidad por Sustrato
19.
Biochim Biophys Acta ; 1794(2): 367-73, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19056523

RESUMEN

The secreted extracellular subtilase SR5-3 from Halobacillus sp. bacterium, isolated from the high-salt environment of Thai fish sauce, was utilized as a model halophilic serine protease. The dependence of salt activation on the size and structure of substrates was evaluated assaying the enzyme with Suc-AAPF-MCA and with the Fluorescence Resonance Energy Transfer (FRET) peptide Abz-AAPFSSKQ-EDDnp. Solvent isotope effects (SIE) and the thermodynamic parameters for activation of the hydrolysis of Suc-AAPF-MCA and Abz-AAPFSSKQ-EDDnp by SR5-3 protease in the presence of salts were also performed. All the obtained results support the notion that the salting out effect is responsible for the halophilic character of SR5-3, and the magnitude of its hydrolytic activity is mainly derived from the improvement of catalytic and/or interaction steps depending on the nature and size of the substrates, principally if they occupy the substrate prime subsites.


Asunto(s)
Bacillaceae/enzimología , Proteínas Bacterianas/metabolismo , Sales (Química)/farmacología , Serina Endopeptidasas/metabolismo , Subtilisina/metabolismo , Proteínas Bacterianas/química , Catálisis , Activación Enzimática , Transferencia Resonante de Energía de Fluorescencia , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Sales (Química)/química , Serina Endopeptidasas/química , Subtilisina/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...